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A tutorial on inverting 3 by 3 matrices with cross products 
 

By Cedrick Collomb1 
 

Abstract.  This tutorial introduces the idea of inverting a 3 by 3 matrix and calculating its 
determinant with cross products hopefully in a simple manner intelligible to any reader with 
minimal mathematical and engineering skills. The formulas are derived twice with different 
approaches and every step is purposely made unnecessarily detailed for ease of understanding. 
The goal of this document is to help the reader implement and use the ideas behind this 
tutorial immediately after reading it.  

 
 

1. Introduction 
 
The inversion of matrices is a recurring step in several Mathematics and Computer 
Science algorithms. Although there already exist several generic algorithms for the 
inversion of matrices, there are several domains such as Embedded software, Computer 
Graphics and Video Games for which performance is critical and for which generic 
algorithms used with low dimension matrices are not good enough. A subset of the 
performance critical problems encountered in those domains can be reduced and solved 
by a linear system of size 3 by 3; therefore the need for an efficient way to inverse a 3 by 
3 matrix. On top of that hardware SIMD architectures have been providing for several 
years the means to compute cross products very efficiently, therefore making the 
technique introduced in this tutorial both a simple and efficient method. 
 
The rest of the tutorial is organized as follow:  Section 2 introduces the theory behind 
general square matrix inversion. Section 3 introduces the difference between theory and 
in use algorithms. Section 4 simplifies the results of Section 2 for small 3 by 3 matrices. 
Section 5 shows how to achieve the same results as Section 4 using cross products. 
Section 6 concludes this tutorial. 

 
 
2. Basic linear algebra refresher 
 

Let M  be a square matrix of dimension n . We note ( )ijM m=  with � �1,i n∈  

representing the row indices and � �1,j n∈  representing the column indices. M can also 

be visualized in the following form
11 1

1

n

n nn

m m

M

m m

 
 =  
 
 

…

⋮ ⋱ ⋮

⋯

. Notice that 1nm  is the last 

element of the first line and 1nm  is the first element of the last line. 
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Although outside the scope of this tutorial2 we can demonstrate that M  is invertible if 
and only if its determinant that will be referenced as ( )det M is not zero. When M  is 

invertible, its inverse is written as 1M −  and can be determined by the following formula:  
 

 1 1
( )

det( )
M adj M

M
− =  (1) 

 
The notation ( )adj M  represents the adjugate matrix of M . The formula means that the 
inverse of M  is the adjugate scaled by the inverse of the determinant which is a scalar. 
The adjugate and determinant still need to be explained so that the previous formula 
makes sense and be at all useable. 
 
The adjugate of M  is also a square matrix of dimension n , and its elements ija are 

defined by the following formula: ij jia c=  (notice that i  and j  are inverted on the right 

hand side of the equation so that to transpose the matrix). The coefficients ijc  are called 

cofactors and are defined with the determinant of the square matrix of dimension 1n −  
created by removing the line i  and column j  from M . 
 

 

11 1, 1 1, 1 1

1,1 1, 1 1, 1 1,

1,1 1, 1 1, 1 1,

, 1 , 1

( 1) det

j j n

i i j i j i ni j
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i i j i j i n

nn n j n j nn

m m m m

m m m m
c

m m m m

m m m m

− +

− − − − + −+

+ + − + + +

− +

 
 
 
 

= −  
 
 
  
 

⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

 (2) 

 
 

The determinant of M  can be calculated with the following formula: 
 

 
1

det( )
n

ij ij
i

M m c
=

=∑  (3) 

 
The choice of j  in (3) does not matter and for a matrix of dimension one, 11det( )M m= . 

 
As you might have noticed this create a recursive formula since det( )M  requires the 

value of the cofactors ijc , and the cofactors are defined with determinants! However you 

can also notice that the size of the matrices involved in the cofactor is always one less 
than the size of the matrix of which we calculate the determinant. Therefore the recursion 
will reach matrices of size one and therefore will end. 
                                                 
2 I recommend any good Linear Algebra course book, for French readers [1] is a good reference 
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3. Matrix inversion in practice 
 

Although the inversion of matrices with adjugate has theoretical value, it is important to 
mention that this form is very rarely used in practice to inverse matrices. 
 
For several classes of problem inversing the matrix just to find one x  so that Mx y=  
when you have M  and y  can be prohibitory expensive, and it makes more sense to 
create iterative algorithms that converge to x . The most common methods3 to proceed 
this way are Jacobi, Gauss-Seidel and the Conjugate gradient. 
 
Even for the cases where the inverse is really needed there are usually better algorithms. 
The most common methods4 are Gauss-Jordan, Shipley-Coleman [4], LU decomposition, 
QR decomposition. 

 
 
4. The 3 by 3 case 
 

If we apply (2) and (3) to the square matrix 
11 12 13

21 22 23

31 32 33

m m m

M m m m

m m m

 
 =  
 
 

, we get the following: 

 
 11 11 21 21 31 31det( )M m c m c m c= + +  (4) 

 22 231 1
11 22 33 32 23

32 33

( 1) det
m m

c m m m m
m m

+  
= − = − 

 
 (5) 

 12 132 1
21 32 13 12 33

32 33

( 1) det
m m

c m m m m
m m

+  
= − = − 

 
 (6) 

 12 133 1
31 12 23 22 13

22 23

( 1) det
m m

c m m m m
m m

+  
= − = − 

 
 (7) 

 21 231 2
12 31 23 21 33

31 33

( 1) det
m m

c m m m m
m m

+  
= − = − 

 
 (8) 

 11 132 2
22 11 33 31 13

31 33

( 1) det
m m

c m m m m
m m

+  
= − = − 

 
 (9) 

 11 133 2
32 13 21 11 23

21 23

( 1) det
m m

c m m m m
m m

+  
= − = − 

 
 (10) 

                                                 
3 See [2] for a good start with common methods for solving linear systems and their descriptions. 
4 See [3] for a good start with matrix inversion methods. 
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 21 221 3
13 21 32 31 22

31 32

( 1) det
m m

c m m m m
m m

+  
= − = − 

 
 (11) 

 11 122 3
23 31 12 11 32

31 32

( 1) det
m m

c m m m m
m m

+  
= − = − 

 
 (12) 

 11 123 3
33 11 22 21 12

21 22

( 1) det
m m

c m m m m
m m

+  
= − = − 

 
 (13) 

Using (5), (6) and (7) with (4) gives: 
 
 ( ) ( ) ( )11 22 33 32 23 21 32 13 12 33 31 12 23 22 13det( )M m m m m m m m m m m m m m m m= − + − + −  (14) 

 
Using (5), (6), (7), (8), (9), (10), (11), (12) and (13) with (1) gives: 
 

 
22 33 32 23 32 13 12 33 12 23 22 13

1
31 23 21 33 11 33 31 13 13 21 11 23

21 32 31 22 31 12 11 32 11 22 21 12

1

det( )

m m m m m m m m m m m m

M m m m m m m m m m m m m
M

m m m m m m m m m m m m

−

− − − 
 = − − − 
 − − − 

 (15) 

 
You can verify by hand that 1

3MM I− = , by multiplying M  by 1M − . 

  
 

5. Calculating the determinant with a dot product and a cross product 
 
Although the formula (15) can be optimized, it is based on scalar operations and do not 
take advantage of SIMD features commonly available on most CPUs. On some processor 
architectures an alternative formulation using SIMD can provide more efficient results. 
 
A common feature with SIMD is the availability of vectors of several dimensions that 
stand for the MD of Multiple Data in SIMD, in most common platforms available today 
those vectors are four dimensional vectors storing floating point values or 32 bits integers. 
 
Stepping back from the final form reached in the last formula and looking at (4), we can 
see that det( )M  looks like a dot product of two three-dimensional vectors. Defining 

11

1 12

13

m

C m

m

 
 =  
  

 which is the first column of M , and [ ]1 11 21 31R c c c=  which is the first 

row of ( )adj M , we notice that 1 1det( )M R C=  or using a dot product form: 

 
 1 1det( ) .TM R C=  (16) 
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Now if we look carefully at 1
TR  we get: 

 

 
11 22 33 32 23 12 13

1 21 32 13 12 33 22 23 2 3

31 12 23 22 13 32 33

T

c m m m m m m

R c m m m m m m C C

c m m m m m m

−       
       = = − = ∧ = ∧       
       −       

 (17) 

2C  and 3C  the second and third rows of M , therefore 
12

2 22

32

m

C m

m

 
 =  
  

 and 
13

3 23

33

m

C m

m

 
 =  
  

. 

 
Therefore using (17) in (16) gives: 
 
 ( )1 2 3det( ) .M C C C= ∧  (18) 

 
 

6. Inverting the matrix with cross products 
 
The formula (18) is quite simple and nice. Moreover through the calculus we also 
realized that the first row of ( )adj M  was the cross product of the second and third 
columns of M, which was interesting and encourage to look at the other rows of ( )adj M . 
 
If we call respectively 2R  and 3R  the second and third rows of ( )adj M , and call 

respectively 2C  and 3C  the second and third rows of ( )adj M  

 

 
12 31 23 21 33 13 11

2 22 11 33 31 13 23 21 3 1

32 13 21 11 23 33 31

T

c m m m m m m

R c m m m m m m C C

c m m m m m m

−       
       = = − = ∧ = ∧       
       −       

 (19) 

 

 
12 21 32 31 22 11 12

3 22 31 12 11 32 21 22 1 2

32 11 22 21 12 31 32

T

c m m m m m m

R c m m m m m m C C

c m m m m m m

−       
       = = − = ∧ = ∧       
       −       

 (20) 

 
Using (17), (18), (19) and (20) we get the elegant and SIMD friendly formula: 
 

 ( ) ( )1
2 3 3 1 1 2

1 2 3

1

.
T

M C C C C C C
C C C

− = ∧ ∧ ∧
∧

 (21) 
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7. An alternative way to get the cross product inversion formula 
 
The cross product of two vectors is by definition normal to both vectors used to calculate 
the cross product,  if we choose iC  and jC  with { } { }( , ) 1, 2,3 1, 2,3i j ∈ ×  then 

 

 ( ). 0i i jC C C∧ =  and ( ). 0j i jC C C∧ =  (22) 

 
If we write two matrices A and B with the following rows and columns notations: 
 

1

2

3

A

A A

A

 
 =  
  

, where 1A , 2A  and 3A  are three dimensional horizontal vectors. 

[ ]1 2 3B B B B= , where 1B , 2B  and 3B  are three dimensional vertical vectors. 

 

Then [ ]
1 1 1 1 2 1 3

2 1 2 3 2 1 2 2 2 3

3 3 1 3 2 3 3

. . .

. . .

. . .

T T T

T T T

T T T

A A B A B A B

AB A B B B A B A B A B

A A B A B A B

  
  = =   
     

 (23) 

 
Imagine that B is M and we want A to be its inverse 1M − . 
 

So we want 

1 0 0

0 1 0

0 0 1

AB

 
 =  
  

, therefore we need to make sure that 1 2. 0TA B =  and 

1 3. 0TA B = . We know 2B  and 3B  since they are columns of M, and we want to find a 

vector that is normal to both. 
 
Using (22) it is very easy with ( )1 1 2 3^TA k B B= . Following the same method we can 

identify ( )2 2 3 1^TA k B B=  and ( )3 3 1 2^TA k B B= . Therefore 

 

 ( ) ( ) ( )1 2 3 2 3 1 3 1 2^ ^ ^
T

A k B B k B B k B B=     (24) 

  
We now need to identify 1k , 2k  and 3k  by using (24) in (23) which gives 

 

( )
( )

( )

1 1 2 3

2 2 3 1

3 3 1 2

. 0 0

0 . 0

0 0 .

k B B B

AB k B B B

k B B B

∧ 
 = ∧ 
 ∧ 
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Therefore  

 ( )1
1 2 3

1

.
k

B B B
=

∧
 (25) 

 ( )2
2 3 1

1

.
k

B B B
=

∧
 (26) 

 ( )3
3 1 2

1

.
k

B B B
=

∧
 (27) 

 
Another interesting property if E, F, G are arbitrary vectors is that we can cycle vectors to 
the left or to the right in the equation below. 
 
 ( ). .( ) .( )E F G F G E G E F∧ = ∧ = ∧  (28) 

 
Note that we only need to demonstrate one equality, since changing variable names leads 
to the third equality. 
 

1

2

3

e

E e

e

 
 =  
  

 and 
1 1 2 3 3 2

2 2 3 1 1 3

3 3 1 2 2 1

f g f g f g

F G f g f g f g

f g f g f g

−     
     ∧ = ∧ = −     
     −     

, therefore 

 
 ( ) ( ) ( ) ( )1 2 3 3 2 2 3 1 1 3 3 1 2 2 1.E F G e f g f g e f g f g e f g f g∧ = − + − + −  (29) 

 
Expanding (29) gives  

  
 ( ) 1 2 3 1 3 2 2 3 1 2 1 3 3 1 2 3 2 1.E F G e f g e f g e f g e f g e f g e f g∧ = − + − + −  (30) 

Factoring (30) by 1f , 2f  and 3f  gives 

 
 ( ) ( ) ( ) ( )1 3 2 2 3 2 1 3 3 1 3 2 1 1 2.E F G f e g e g f e g e g f e g e g∧ = − + − + −  (31) 

 

1 1 2 3 3 2

2 2 3 1 1 3

3 3 1 2 2 1

g e g e g e

G E g e g e g e

g e g e g e

−     
     ∧ = ∧ = −     
     −     

 therefore see from (31) that ( ). .( )E F G F G E∧ = ∧ . 

 
Using (28) with (25), (26) and (27) we get 
 

 ( )1 2 3
1 2 3

1

.
k k k

B B B
= = =

∧
 (32) 
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And finally using (32) and (24) we reach the same result as in the previous section 
 

( ) [ ]2 3 3 1 1 2
1 2 3

1
^ ^ ^

.
T

A B B B B B B
B B B

=
∧

 

 
 

8. Conclusion 
 
This document has shown with two distinct approaches that it is possible to invert a three 
by three matrix with three cross products, one dot product and a matrix transpose. It has 
also shown that the determinant of the same matrix could be calculated with one cross 
product and one dot product. 
 
Although inverting a matrix is a solved problem, finding optimal algorithms is still an 
unsolved problem. Of related importance is the fact that the computing complexity of 
matrix inversion is equivalent to matrix multiplication 5 , and also equivalent to the 
complexity of solving a collection of linear equations and computing the determinant of a 
matrix6. Therefore any progress made by any of those area of research immediately will 
benefit the other areas. 
 
A lot of progress has been made since the seminal discovery [7], made by Strassen in 
1969. However there is still major interest to investigate and discover new and improved 
algorithms to address those areas, and the reader of this tutorial can take part in this 
research effort. 
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